欢迎光临
我们一直在努力

等比数列前n项和公式

等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示,q≠0。等比数列a1≠0。其中{an}中的每一项均不为0。

如果等比通项公式为an=a1*qn-1,当q=1时,求和公式为Sn=n*a1;当q≠1时,求和公式为Sn=a1(1-qn)/(1-q)。由于首项为a1,公比为q的等比数列的通项公式可以写成an=(a1/q)×qn,它的指数函数y=ax有着密切的联系,从而可以利用指数函数的性质来研究等比数列。

等比数列前n项求和公式:Sn=na1(q=1),等比数列求和公式是求等比数列之和的公式。如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公式可以快速的计算出该数列的和。

推导如下:

因为an = a1q^(n-1)

所以Sn = a1+a1*q^1+…+a1*q^(n-1) (1)

qSn =a1*q^1+a1q^2+…+a1*q^n (2)

(1)-(2)注意(1)式的第一项不变。

把(1)式的第二项减去(2)式的第一项。

把(1)式的第三项减去(2)式的第二项。

以此类推,把(1)式的第n项减去(2)式的第n-1项。

(2)式的.第n项不变,这叫错位相减,其目的就是消去这此公共项。

于是得到

(1-q)Sn = a1(1-q^n)

即Sn =a1(1-q^n)/(1-q)。

等比数列的性质

①若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq;

②在等比数列中,依次每 k项之和仍成zhi等比数列.

“G是a、b的等比中项”dao“G^2=ab(G≠0)”.

③若(an)是等比数列,公比为q1,(bn)也是等比数列,公比是q2,则

(a2n),(a3n)…是等比数列,公比为q1^2,q1^3…

(can),c是常数,(an*bn),(an/bn)是等比数列,公比为q1,q1q2,q1/q2。

(5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)

在等比数列中,首项A1与公比q都不为零.

注意:上述公式中A^n表示A的n次方。

(6)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列