无理数
有理数是数学这一科学当中对数字的一种概念定义,有理数是整数与分数这两类数字所构成的集合的一种统称,实际上我们也可以将该集合当中的整数看做是分母数字等于1的分数,与有理数相对的概念就是无理数。
π不是有理数的原因:
首先看无理数的定义:无理数,即非有理数之实数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。π一小数的形式表达时,小数点后的数字无限个,不会循环。所以就看做无理数。
π不是有理数。有理数是一个整数a和一个正整数b的比,有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。π=3.1415926…是无限不循环小数,所以π是无理数。
有理数与无理数的区别
有理数是整数和分数的统称,而无理数是无限不循环小数。有理数的性质是一个整数a和一个正整数b的比,无理数的性质是由整数的比率或分数构成的数字。有理数集是整数集的扩张,而无理数是指实数范围内,不能表示成两个整数之比的数。